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Giry monad

Let Mble be the category of measurable spaces.

For a measurable space Ω. Let GΩ be the set of probability measures on
Ω. For a measurable subset A ⊆ Ω, we have an evaluation map

evA : GΩ → [0, 1].

GΩ becomes a measurable spaces by endowing it with the σ-algbra generated
by the evaluation maps.

For a measurable map f : Ω1 → Ω2, pushing forward along f defines a
measurable map Gf : GΩ1 → GΩ2.

This gives an endofunctor G : Mble → Mble.
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There is a measurable map µΩ : GGΩ → GΩ:

µΩ(P)(A) :=

∫
λ∈GΩ

λ(A)P(dλ),

for all P ∈ GGΩ and measurable subsets A ⊆ Ω.

We have a map ηΩ : Ω → GΩ:

ηΩ(ω) := δω,

for all ω ∈ Ω.

These form natural transformation µ : GG → G and η : 1Mble → G and
(G , µ, η) forms a monad, the Giry monad.
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Examples of algebras of probability monads
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Examples of Giry algebras

Intuitively, the structure map of an algebra of the Giry monad is a ’barycenter
operation’ or ’expectation operation’.

Consider the measurable space [0, 1] and define a map
∫
: G ([0, 1]) → [0, 1]

by the assignment

P 7→
∫

xP(dx).

We have that ∫
xδx0(dx) = x0

and ∫∫
xP(dx)P(dP) =

∫
xµ(P)(dx).

Therefore, ([0, 1],
∫
) is a Giry algebra.
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Examples of Giry algebras

For the set {0,∞} we can define a map α : G ({0,∞}) → {0,∞} by

α
(
λδ0 + λδ∞

)
:=

{
0 if λ = 1,

∞ otherwise.

We have that α(δ0) = 0 and α(δ∞) = ∞.

For a probability measure P on G ({0,∞}), we have that

P(α−1(0)) = 1 ⇔ P(δ0) = 1 ⇔ µ(P)(0) = 1.

Therefore, α(P ◦ α−1) = 0 ⇔ α(µ(P)) = 0, making ({0,∞}, α) a Giry
algebra.

Other examples: [0, 1), [0,∞], [0, 1]R, lattices, . . .
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Algebras of the distribution monad

The monad of finitely supported probability measures on Set is the
distribution monad.

The algebras of this monad are convex space, i.e. a set C with operations

(cλ : C × C → C )λ∈[0,1] ,

satisfying the appropriate axioms [2].

Examples: R, vector spaces, lattices, . . .
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Algebras of the Radon monad

The monad of Radon probability measures on CH is the Radon monad.

The algebras of this monad are convex compact Hausdorff spaces, i.e. compact
convex subsets of (Hausdorff) locally convex topological vector spaces [3].

Given a convex compact Hausdorff space K , a structure map R(K ) → K can be
defined by sending every probability measure to its barycenter.
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Topologizing Giry algbras
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Associated vector space

Let (C , γ) be an algebra of the distribution monad (on Mble and let M(C )) be
the vector space of finite signed measures on C .

Define the subspace

W1 :=

{
N∑

n=1

λn(pn − δγ(pn)) | λn ∈ R, pn ∈ D(C ) for all n

}

Define the vector space
V1(C ) := M(C )/W1.

This defines a left adjoint functor MbleD → Vect to the forgetful functor
Vect → MbleD .
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Associated vector space

Note that V1(C ) is the following coequalizer:

MfDC MC V1(C )
Mγ

µ

Indeed,

N∑
n=1

λn(pn − δγ(pn)) = µ(Q)−Q ◦ γ−1,

where Q =
∑N

n=1 λnδpn in MfDC .
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Associated vector space
For a distribution monad algebra (C , γ), there is a canonical convex map

ϕ1 : C → V1(C ) : c 7→ [δc ].

Theorem (Stone [4])

Let (C , γ) be an algebra for the distribution monad. The following statements are
equivalent.

ϕ1 is injective.

For a, b, c ∈ C , λ ∈ (0, 1]

λa+ λc = λb + λc ⇒ a = b.

Convex morphisms C → [0, 1] separate points.

In this case we say that (C , γ) satisfies the (first) cancellation property (C1).
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Associated LCTVS

Let (A, α) be a Giry algebra and let M(A) be the vector space of all finite signed
measures on A.

Consider the following coequalizer:

MGA MA V2(A)
Mα

µ

i.e V2(A) = MA/W2, where

W2 :=
{
µ(Q)−Q ◦ α−1 | Q ∈ MGA

}
.
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Associated LCTVS

We will now give V2(A) a LCTVS structure.

For an algebra morphism f : A → [0, 1], the assignment

[µ] 7→
∣∣∣∣∫ f dµ

∣∣∣∣
forms a seminorm ρf : V2(A) → R.

The family (ρf )f defines a LCTVS structure on V2(A).

However, this LCTVS might not be Hausdorff.
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Associated Hausdorff LCTVS

We will now look at the Hausdorffication of V2(A).

Let V3(A) be the
Hausdorffication of V2(A) and let

ϕ2,3 : V2(A) → V3(A)

be the corresponding quotient map.
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Associated Hausdorff LCTVS

Proposition

Let (A, α) be a Giry algebra, then V3(A) = MA/W3, where

W3 = {µ | µ(f ) = 0 for all algebra morphisms f : A → [0, 1]} .
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Associated Hausdorff LCTVS

The Hausdorff LCTVS structure on V3(A) is again given by the family of
seminorms,

ρf : V3(A) → R : [µ] 7→
∣∣∣∣∫ f dµ

∣∣∣∣ ,
for algebra morphisms f : A → [0, 1].

This gives a commutive diagram:

MbleG

LCTVS HdLCTVS

V2 V3
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Assoiated Hausdorff LCTVS

For a Giry algebra (A, α), there is a canonical map

ϕ3 : A → V3(A) : a 7→ [δa].

Theorem

Let (A, α) be a Giry algebra. The following statements are equivalent.

ϕ3 is injective.

Algebra morphisms A → [0, 1] separate points.

ϕ2,3 is an isomorphism and (A, α) satifies (C1).

In this case we say that (A, α) satisfies the second cancellation property (C2).
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Associated vector spaces

The vector spaces are linked to each other in the following way:

A

V1(A) V2(A) V3(A)

ϕ1
ϕ2

ϕ3

ϕ1,2 ϕ2,3
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Cancellation properties

We have inclusion functors:

MbleGC2 MbleGC1 MbleG
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Cancellation properties

These have left adjoints:

MbleGC2 MbleGC1 MbleG⊣ ⊣

The units of the adjunctions are given by ϕ1 and ϕ3.
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Topologizing Giry algebras

We will now study the topological properties of the subset ϕ3(A) ⊆ V3(A).

Theorem

Let (A, α) be a Giry algebra, then ϕ3(A) ⊆ V3(A) is a convex, relatively
compact, Hausdorff subspace.
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Topologizing Giry algebras

Proof: The vector space M(A) of finite signed measures becomes topological, by
endowing it with the topology generated by the maps

ρf : M(A) → R : µ 7→ |µ(f )|

By the Banach-Alaoglu theorem, it follows that the subset{
µ ∈ M(A) | sup

∥f ∥∞<1

|µ(f )| ≤ 1

}

is a compact subset of M(A).

There is a continuous linear map p : M(A) → V3(A), hence p(U) is a compact
subset of VA.

Furthermore, we have that ϕ3(A) ⊆ p(U) and therefore it is relatively compact.
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Topologizing Giry algebras

Every algebra morphism f : A → [0, 1] factors uniquely through A → ϕ3(A).

A [0, 1]

ϕ3(A)

f

f̃

Proposition

A map f : A → [0, 1] is an algebra morphism if and only if f̃ : ϕ3(A) → [0, 1] is
convex and continuous.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 26 / 42



Topologizing Giry algebras

Every algebra morphism f : A → [0, 1] factors uniquely through A → ϕ3(A).

A [0, 1]

ϕ3(A)

f

f̃

Proposition

A map f : A → [0, 1] is an algebra morphism if and only if f̃ : ϕ3(A) → [0, 1] is
convex and continuous.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 26 / 42



Topologizing Giry algebras

Proof: Let P be a probability measure on A. There exist a net (pi )i such that

pi (g) → P(g)

for all convex morphisms g : A → [0, 1].

Then,

P(f ) = lim
i
pi (f ) = lim

i
f (α(pi )) = f̃ (lim

i
ϕ3(α(pi )) = f̃ ϕ3α(P) = f (α(P)).
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Topologizing Giry algebras

Corollary

Let (A, α) be a Giry algebra such that V3(A) is finite-dimensional.

(A, α) satisfies (C1) if and only if (A, α) satisfies (C2).

Every convex map f : A → [0, 1] is an algebra morhpsism.
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Topologizing Giry algebras

Theorem

Let (A, α) be a Giry algebra. For a probability measure P on A,

ϕ3(α(P)) =
∫

ϕ3dP.

Here we used the Pettis integral of ϕ3 : A → V3(A).

Proof: Because ϕ3(A) is a convex, relatively compact subset of V3(A), we know
that the Pettis integral exists. Let g : V3(A) → R be a linear continuous
functional. Then g ◦ ϕ3 is an algebra morphism1. Therefore,

g(ϕ3(α(P))) =
∫

gϕ3dP.

By the defining property of the Pettis integral, the statement follows.

1Note that it is bounded because ϕ3(A) is compact.
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Radon-Giry algebra adjunction

We will now construct an adjunction between Giry algebras and Radon algebras,

MbleG CHR⊣

Given a Radon algebra (K , κ), we consider the measurable space K , whose
σ-algebra is generated by the continuous convex maps K → [0, 1].

Using Pettis integration, we can define a structure map GK → K , extending κ.
This makes K into a Giry algebra.

We obtain a full and faithful functor R : CHR → MbleG .
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Radon-Giry algebra adjunction

Let (A, α) be a Giry algebra.

Then ϕ3(A) is a Radon algebra, where the structure
map is given by Pettis integration of ϕ3 : A → V3(A).

This defines a functor L : MbleG → CHR .

Theorem

The functor R : CHR → MbleG is right adjoint to L : MbleG → CHR . Moreover,
the counit is a natural isomorphism and η(A,α) is monic if and only if (A, α)
satisfies (C2).
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Characterization of Giry algebras satisfying (C2)

Let RelCompConv be the category of relatively compact, convex subsets of
locally convex topological vector spaces.

We can decompose the previous adjunctions as follows:

MbleG RelCompConv CHR⊣ ⊣

The counit of the first adjunction is a natural isomorphism.

For the unit η of the first adjunction, we have for every Giry algebra (A, α) that

η(A,α) is an isomorphism ⇔ (A, α) satisfies (C2).

Theorem

The categories MbleGC2 and RelCompConv are equivalent.
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Ordering Giry algbras
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Ordering Giry algebras

Let (A, α) be a Giry algebra.

Definition

For a, b ∈ A, we write a ≤ b if for all a λ ∈ (0, 1) such that λa+ λb = b.

Example: (∞, 0) ≤ (∞,∞) in [0,∞]2.

By Lemma 5 in [1], this is equivalent to saying that there exists a λ ∈ (0, 1) such
that λa+ λb = b.

Proposition

P(A) := (A,≤) forms a partially ordered set and there is a functor
P : MbleG → Pos.
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Ordering Giry algebras

Proposition

Let (A, α) be a Giry algebra and a an element in A.

If (A, α) satisfies (C2), then P(A) is discrete.

The subset ↓ a is convex, and every algebra morphism f : A → [0, 1] is
constant on ↓ a.

Definition
An element a ∈ A is an infinite element if ↓ a is not empty.

Example: ∞ in [0,∞].

Example: [0, n]× {0} ≤ (∞, 0) in [0,∞]2 for all n ≥ 0.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 35 / 42



Ordering Giry algebras

Proposition

Let (A, α) be a Giry algebra and a an element in A.

If (A, α) satisfies (C2), then P(A) is discrete.

The subset ↓ a is convex, and every algebra morphism f : A → [0, 1] is
constant on ↓ a.

Definition
An element a ∈ A is an infinite element if ↓ a is not empty.

Example: ∞ in [0,∞].

Example: [0, n]× {0} ≤ (∞, 0) in [0,∞]2 for all n ≥ 0.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 35 / 42



Ordering Giry algebras

Proposition

Let (A, α) be a Giry algebra and a an element in A.

If (A, α) satisfies (C2), then P(A) is discrete.

The subset ↓ a is convex, and every algebra morphism f : A → [0, 1] is
constant on ↓ a.

Definition
An element a ∈ A is an infinite element if ↓ a is not empty.

Example: ∞ in [0,∞].

Example: [0, n]× {0} ≤ (∞, 0) in [0,∞]2 for all n ≥ 0.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 35 / 42



Ordering Giry algebras

Proposition

Let (A, α) be a Giry algebra and a an element in A.

If (A, α) satisfies (C2), then P(A) is discrete.

The subset ↓ a is convex, and every algebra morphism f : A → [0, 1] is
constant on ↓ a.

Definition
An element a ∈ A is an infinite element if ↓ a is not empty.

Example: ∞ in [0,∞].

Example: [0, n]× {0} ≤ (∞, 0) in [0,∞]2 for all n ≥ 0.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 35 / 42



Ordering Giry algebras

Proposition

Let (A, α) be a Giry algebra and a an element in A.

If (A, α) satisfies (C2), then P(A) is discrete.

The subset ↓ a is convex, and every algebra morphism f : A → [0, 1] is
constant on ↓ a.

Definition
An element a ∈ A is an infinite element if ↓ a is not empty.

Example: ∞ in [0,∞].

Example: [0, n]× {0} ≤ (∞, 0) in [0,∞]2 for all n ≥ 0.

Ruben Van Belle (University of Oxford) Algebras of the Giry monad 2 June 2025, Gainesville, ACT 35 / 42



Future work: Infinite elements

Consider the Giry algebra ([0,∞], α), where α(P) =
∫∞
0

xP(dx).

This algebra is
not (C2). For a probability measure P on [0,∞),

α(P) =
∫ ∞

0

xP(dx)

= lim
n

∫ n

0

xP(dx)

= lim
n

1

P([0, n])

∫ n

0

xP(dx)

= lim
n

α

(
P(− ∩ [0, n])

P([0, n])

)
.

Note that [0, n] is an algebra that does satisfy (C2).
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Future work: Infinite elements

For an infinite element c , consider the collection

Sc := {B ⊆ A | B ≤ c and B is a (C2) subalgebra.}

Define Bc :=
⋃

Sc . For c1 ≤ c2, we have that Bc1 ⊆ Bc2 .

Goal: Can we make sense of the following?

For a probability measure P on Bc ,

” α(P) = lim
B∈Sc

∫
ϕBdP ”.

For a probability measure P on A,

” α(P) = lim
c∈P(A)

α(PBc ) ”.
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Giry algebra-valued random variables
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Giry algebra-valued random variables

Let (Ω,F ,P) be a probability space and let (A, α) be a Giry algebra.

A Giry algebra-valued random variable is a measurable map f : Ω → A.

We can define the expectation of f as follows:

E[f ] = α(P ◦ f −1).

Note that every such random variable is integrable.

Example: For a random variable f taking values in the Giry algebra ([0, 1],
∫
), we

have

E[f ] =
∫
(P ◦ f −1) =

∫
xP ◦ f −1(dx) =

∫
f dP.
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Conditional expectation

Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra of F .

For a random variable f taking values in a Giry algebra (A, α), a conditional
expectation of f with respect to G is a G-measurable random variable
g : Ω → A such that

α(PE ◦ f −1) = α(PE ◦ g−1)

for all E ∈ G such that P(E ) ̸= 0.

Here PE is defined as P(−∩E)
P(E) .
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Conditional expectation

Proposition

Let (A, α) be a σ-algebra such that V3(A) satisfies the Radon-Nikodym property.

Then conditional expectation of random variables valued in A exist and are almost
surely unique.
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